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ABSTRACT

The use of measures from information theory to evaluate the expected utility of a set of candidate actions is a
popular method for performing sensor resource management. Shannon entropy is a standard metric for informa-
tion. Past researchers have shown1–5 that the discrete entropy formula can measure the quality of identification
information on a target, while the continuous entropy formula can measure kinematic state information of a
target. In both cases, choosing controls to minimize an objective function proportional to entropy will improve
ones information about the target. However, minimizing entropy does not naturally promote detection of new
targets or “wide area surveillance” (WAS). This paper outlines a way to use Shannon entropy to motivate sen-
sors to track (partially) discovered targets and survey the search space to discover new targets simultaneously.
Results from the algorithmic implementation of this method show WAS being favored when most targets in the
search space are undiscovered, and tracking of discovered targets being favored when most targets are in track.
The tradeoff between these two competing objectives is adjusted by the objective function automatically and
dynamically.
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1. INTRODUCTION

Sensor resource management is the control mechanism in information fusion.6 Sensor schedules drive a system of
sensors and processing algorithms to improve knowledge of a battlespace. Sensor management algorithms have
been researched for many years. A number of techniques exist for solving the problem.5,7 One popular and
successful approach has been the application of measures from information theory. These approaches typically
entail calculating the amount of expected information resulting from a candidate sensor action to determine
whether it merits execution. Hintz and McVey8 were the first to use information theory for sensor management.
In that work, they use a measure of entropy due to Shannon4 to track multiple targets with a single sensor.
The discrete entropy formula can measure the quality of identification (ID) information on a target, while the
continuous entropy formula can measure the kinematic state information. In both cases, choosing controls to
minimize an objective function proportional to entropy will improve the quality of information about the target.

While information-theoretic approaches have been shown to perform favorably in a variety of sensor manage-
ment and target tracking problems, many of these problems have included only one goal. In a typical problem,
however, it may be desirable to direct sensors to accomplish multiple goals simultaneously. For example, one may
wish to both improve ID and kinematic information of a target at the same time, such as is done in.9,10 Directing
sensors to improve information about currently tracked targets and detect new targets is another pair of com-
plimentary goals. Achieving a balance between these two is especially important in difficult tracking situations
such as long-duration missions, environments with significant obscuration, vehicles that undergo stop-move-stop
motion, and lack of sensor availability. In these cases, it is unlikely that track can be maintained on all targets of
importance during an entire mission. Sensor resources dedicated to improving, say, the ID of a currently tracked
target are less resources available for performing “wide area surveillance” (WAS) to detect new targets or targets
that have been lost. Current entropy-based approaches do not naturally handle this tradeoff between competing
mission goals.

This paper outlines a way to use Shannon entropy to motivate sensors to track discovered targets and survey
the search space to discover new targets simultaneously. In this method, an objective function is defined as a
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weighted sum over the expected entropy values of all targets. A heterogeneous distribution of targets is assumed
to exist in a spatially discretized search space. These undiscovered targets are added into the total objective
function with maximum entropy, Hmax. Once detected, these targets will be added into the objective function
with some value less than Hmax, thereby lowering the value of the objective function. To evaluate candidate
controls, the expected value of the objective function (factoring in entropy from undiscovered targets and targets
in track) is computed, and controls promising the most significant decrease to the objective function are chosen.

The paper begins with a discussion of the objective function used for evaluation of candidate sensor controls
in section 2. The objective function presented here has two components, but only the WAS-based component
will be discussed in detail. In section 3 a WAS-based objective function is derived to evaluate candidate sesor
tasks under the assumption that they are independent. Then in section 4 this objective function is extended
to evaluate entire schedules of tasks, including tasks that may be occurring simultaneously or with partial time
overlap.

2. THE OBJECTIVE FUNCTION FOR SENSOR CONTROLS

In this paper we consider a general sensor scheduling problem in which tasks for multiple sensors at multiple times
must be automatically queued to (a) maintain track information (identification and/or kinematics) on discovered
targets, and (b) discover undiscovered targets in the search space. To this end, we employ an “information metric”
or “objective function” to score possible candidate sensor tasks and chose the best ones. This metric is based on
discrete Shannon entropy,4 and has two components corresponding to the two goals stated above:

• a track-based objective function, JT , that measures the quality of information on existing “tracks” (dis-
covered targets), and

• a WAS-based objective function, JW , that measures the quality of information gained from WAS.

The two objective functions work together and naturally counterbalance each other to choose tasks for WAS
when there are very few targets in track, and chose tasks for track maintenance when we believe most of the
targets in the search space are discovered and in track. Overall, we seek a sensor schedule that will minimize the
sum of the two competing terms

J = JT + JW .

The discrete Shannon entropy formula is a means of measuring the quality of an identification estimate. (While
this paper works with the discrete entropy formula, the theory presented is compatible with the continuous form
of entropy (for kinematics) as well. The formulas, however, require some modification.) Let p = [p1, . . . pN ] be a
classification vector, where pi is the probability that the target belongs to class i, i ∈ {1, . . . , N}. The entropy
of p is defined as

H(p) = −
N∑

i=1

pi · log(pi).

It is immediate that

• H(p) ≥ 0,
• Hmax = log(N), resulting from a completely unclassified target with probability vector p =

[
1
N , . . . 1

N

]
,

• Hmin = 0, resulting from a perfectly classified target, with probability vector p = [0, . . . , 0, 1, 0, . . . , 0],
• better target classification corresponds to lower entropy.

For targets being tracked, each has a classification vector computed by accumulating evidence from measurements
that are associated with a target through a fusion and tracking process. Targets assumed to exist in the search
space undiscovered are given classification vectors p =

[
1
N , . . . 1

N

]
, since no classification information exists for

these targets.

In the objective function J , the entropy of each target is weighted by the target classification vector p in such
a way that targets that are classified as “targets of interest” (TOIs) will affect the objective function more than



targets that are not classified as TOIs. Mathematically, this is given by W (p) ·H(p) where

W = W (p) =
∑

i∈ {TOIs}

pi.

The schedule evaluation process cannot have access to the results of the fusion and tracking process, as
that would require the candidate tasks to be executed before they were evaluated. So the objective function
is computed from expected entropy rather than actual entropy values. The expected entropy is a function of
new classification information expected to be obtained from a candidate sensor task. We estimate the expected
entropy by considering all of the possible classification outcomes weighted by their probability of occurring. For
the lth target, this produces

Ĥ(pl) =
∑

n∈Outcome

Ĥl|nP̂l(n),

where “Outcome” is a declaration by a target classification process.

Targets that are believed to be discovered or partially known are called tracks, and these tracks have classifi-
cation vectors pl that are maintained in a tracking module. The score of a candidate task is partially based on
its ability to improve the classification of tracks in the tracking module. This is reflected in the track component
of the score,

JT =
∑

pl∈{existing tracks}

W (pl)Ĥ(pl).

Extensive work supports the use of entropy to measure target classification in this way1–5 and therefore analysis
of JT will be excluded from this paper.

3. EVALUATION OF A SENSOR TASK

The motivation to perform wide area surveillance (WAS) to initiate new tracks stems from a belief that there
exist additional (undiscovered) targets scattered throughout the search space that are not currently in track.
The objective function should reward sensors for discovering these targets and tracking them. This assertion is
formalized by hypothesizing a distribution of undiscovered targets and designing the objective function JW that
decreases as undiscovered targets are discovered.

Suppose T (tstart, tend, S) represents a single observation or task performed by sensor S from tstart to tend.
Further, suppose that the search space is divided into non-overlapping “gridblocks” Bj , and the footprint of
task T (tstart, tend, S) covers some of the gridblocks. To avoid complicated polygon intersection calculations, a
sensor footprint covering the center point of a gridblock (the “gridpoint”) will be modeled as coverage of that
entire gridblock. This approximation will produce a computation error proportional to the area of the individual
gridblocks, and this can be decreased in the simulation by dividing the search space into smaller gridblocks.

If the footprint of task T (tstart, tend, S) intersects the gridblock Bj , one expects that T (tstart, tend, S) should
reveal some of the undiscovered targets in Bj . Tasks that reveal more undiscovered targets and/or tasks that
gather more information about the discovered targets should be favored by JW by lowering its value.

In what follows, the parameter “T” appearing with a quantity will designate the value of that quantity
assuming T was executed; t0 will be a time before the start time of task T , tT will be the duration of the task
T , t1 will be a time after the completion time of task T , and tDIFF = t1 − t0. Let:

• NU
ij (t, T ),

(
NU

ij (t)
)
, be a random variable representing the number of undetected targets of type i located

within gridblock Bj at time t with (without) the observation from task T;

• NU
j (t, T ) =

∑
i NU

ij (t, T ),
(
NU

j (t) =
∑

i NU
ij (t)

)
;

• λU
ij(t, T ) = E[NU

ij (t, T )],
(
λU

ij(t) = E[NU
ij (t)]

)
be the expected value of NU

ij (t, T ),
(
NU

ij (t)
)
;

• λU
j (t, T ) = E[NU

j (t, T )],
(
λU

j (t,∼ T ) = E[NU
j (t,∼ T )]

)
;



• Di(Xj , t, T ) be the probability that if a target of type i does indeed exist at location Xj (within gridblock
Bj) at time t that task T will detect it (obviously Di(Xj , t) = 0 if Xj is not in the footprint of task T );

• ND
ij (t, T, NU

ij (t)) be a random variable representing the number of targets of type i within gridblock Bj

that will be detected by task T at time t;

• E
[
ND

ij (t, T, NU
ij (t))

]
be the expected number of targets of type i within gridblock Bj that will be detected

by task T at time t.

The mean λU
ij(t) represents the sensor managers best estimate of how many targets of type i are in Bj , and can

be formed on the basis of a priori information, data gathered during the course of the mission, or a combination
of the two (e.g., a priori estimates refined using analysis of tracker data). In this paper, λU

ij(t) will be estimated
at t0 and then maintained using the equations below.

To determine the optimal sensor task T at time t0, one would minimize

J(t1, T ) = JT (t1, T ) + JW(t1, T ),

where the dependence of T on tstart, tend, and S has been suppressed. The weighted expected entropy of existing
tracks (with the expected improvement from task T ) is

JT (t1, T ) =
∑

pl∈{existing tracks}

W (pl) · Ĥ(pl, t1, T )

with Ĥ(pl, t1, T ) representing the expected entropy of the track pl at time t1 incorporating task T . However, the
weighted entropy of undiscovered and newly discovered targets represented in the JW(t1, T ) term is the focus of
this paper.

JW(t1, T ) is a value of the objective function in the future, and is unavailable to the sensor manager. To
evaluate candidate tasks, the sensor manager must estimate this value. This involves computing λU

ij(t1, T ) from
λU

ij(t0) for each possible candidate task T . Assuming that a sensor task T with footprint covering gridblock Bj

should reveal some of the undiscovered targets in Bj , the value λU
ij in those gridblocks should be decreased, and

those discovered targets should be transferred into new tracks. Meanwhile, gridblocks Bj not covered by the
footprint of T may be accumulating undiscovered targets; thus, λU

ij may increase for these unobserved gridblocks
as time goes by. These statements are formalized in the equation

JW(t1, T ) =
∑

j 6∈footprint of T

Wj · λU
ij(t1, T ) ·Hmax +

∑
j∈ footprint of T

Wj · λU
ij(t1, T ) ·Hmax

+
∑

pl∈{new tracks}

W (pl) ·H(pl, t1, T )

with λU
ij(t1, T ) = λU

ij(t0) + εij(tDIFF) for j 6∈ footprint of T , and λU
ij(t1, T ) = λU

ij(t0) − Kij + εij(tDIFF − tT )
for j ∈ footprint of T . Kij represents the number of new tracks of type i discovered by T in gridblock Bj ,
and the sum over new tracks runs from 1 to

∑
i,j Kij . The factor εij(s) is added to the undiscovered targets

(hereafter referred to as “target mass” because the value may be fractional) while gridblocks are not being
observed, to represent undiscovered targets of type i that might be accumulating in gridblock Bj while no sensor
task is observing it. εij(s) should be computed so that the undiscovered target mass in gridblock Bj would
have bounded growth. For example, εij(s) = (1− 2−s)

(
λU

ij(0)− λU
ij(t0)

)
has the properties that εij(0) = 0 and

lims→∞ εij(s) = λU
ij(0) − λU

ij(t0); so the undiscovered target mass in an unobserved cell will eventually grow to
its original value at the beginning of the simulation.

The new tracks, pl, will not actually be known prior to the execution of task T ; therefore, values dependent
on these new tracks must be estimated by the sensor manager. The number of new tracks of type i originating
from gridblock Bj as a result of task T is estimated as

Kij ≈ E
[
ND

ij (t, T, NU
ij (t))

]
.



Therefore λU
ij(t1, T ), the average number of undiscovered targets following task T , must be approximated in

gridblocks covered by T as

λU
ij(t1, T ) ≈ λU

ij(t0)− E
[
ND

ij (t, T, NU
ij (t))

]
+ εj(tDIFF − tT )

for j ∈ footprint of T . The entropy of the new tracks originating from gridblock Bj as a result of task T will be
represented by an expected entropy,

H(pl, t1, T ) ≈ Ĥj(t1, T ).

This value can be approximated based on the type of sensor being used, the geometry of the task T , etc. The
sensor manager’s estimate of the entropy from newly discovered tracks (by task T ) becomes∑

pl∈{new tracks}

W (pl) ·H(pl, t1, T ) ≈
∑

j∈ footprint of T

{
Wj · E

[
ND

ij (t, T, NU
ij (t))

]
· Ĥ(pl, t1, T )

}
.

Based on these approximations, The compete objective function can be rewritten as

J(t1, T ) ≈
∑

pl∈{existing tracks}

W (pl) · Ĥ(pl, t1, T ) +
∑

j 6∈footprint of T

Wj ·
(
λU

j (t0) + εj(tDIFF)
)
·Hmax

+
∑

j∈ footprint of T

{
Wj ·

(
λU

j (t0, T )− E
[
ND

ij (t, T, NU
ij (t))

]
+ εij(tDIFF − tT )

)
·Hmax

}
+

∑
j∈ footprint of T

{
Wj ·

(
E
[
ND

ij (t, T, NU
ij (t))

]
· Ĥ(pl, t1, T )

)}
, (1)

where “existing tracks” refer to tracks that existed prior to
/
independent of task T , and εj =

∑
i εij(s).

The expected value E
[
ND

ij (t, T, NU
ij (t))

]
is computed from the law of total expectation. If

E
[
ND

ij (t, T, NU
ij (t)) |NU

ij (t) = n
]

represents the expected number of targets within gridblock Bj that will be
detected by task T at time t, given that exactly n targets are present, then

E
[
ND

ij (t, T, NU
ij (t))

]
=

∞∑
n=0

{
E
[
ND

ij (t, T, NU
ij (t)) |NU

ij (t) = n
]
· P (NU

ij (t) = n)
}

=
∞∑

n=0

n∑
k=0

{
P
(
ND

ij (t, T, NU
ij (t)) = k|NU

ij (t) = n
)
· k · P (NU

ij (t) = n)
}

.

From here on it is convenient, and often reasonable, to assume that

• detections occur independent of one another,
• detection probability for each target type is constant throughout a gridblock,
• detection probability for each target type is constant in time (within each scheduling interval).

Under these assumptions, Di(Xj , t, T (t, S)) = Dij(T (S)), and detections can be modeled by a binomial distri-
bution, so that

P
(
ND

ij (t, T, NU
ij (t)) = k |NU

ij (t) = n
)

=
(

n
k

)
· (Dij(T (S)))k · (1−Dij(T (S)))n−k

.

In this paper it will also be assumed that

• the probability of detection will not depend on target type, i.e. Dij(T (S)) = Dj(T (S)).

(This is not necessary for the theory, but makes the formulas much more readable.)

In the absence of additional information about the distribution of undiscovered targets within a gridblock, it
is practical to assume that NU

ij follows a Poisson distribution, so that

P
(
NU

ij (t) = n
)

=

(
λU

ij(t)
)n · exp(−λU

ij(t))
n!

.



Under these assumptions the formula for the expected number of targets of type i discovered gridblock Bj

becomes

E
[
ND

ij (t, T, NU
ij (t))

]
=

∞∑
n=0

n∑
k=0

{(
n
k

)
· (Dj(T (S)))k · (1−Dj(T (S)))n−k ·

(
k

n!

)
·
(
λU

ij(t)
)n · exp(−λU

ij(t))
}

= Dj(T (S)) · λU
ij(t).

The objective function becomes

J(t1, T ) =
∑

pl∈existing tracks

W (pl) · Ĥ(pl, t1, T ) +
∑

j 6∈footprint of T

Wj ·
(
λU

j (t0) + εj(tDIFF)
)
·Hmax

+
∑

j∈ footprint of T

{
Wj ·

[(
(1−Dj(T )) · λU

j (t0, T ) + εj(tDIFF − tT )
)
·Hmax + Dj(T ) · λU

j (t0, T ) · Ĥj(t1, T )
]}

.

(2)

The term Wj ·
(
(1−Dj(T )) · λU

j (t0, T ) + εj(tDIFF − tT )
)
·Hmax in (2) represents weighted entropy of targets

within the footprint of task T that escape discovery by T . The term Wj

(
Dj(T ) · λU

j (t0, T ) · Ĥj(t1, T )
)

in (2)
represents the (unweighted) entropy of targets newly discovered by task T . This function should be minimized
to find the best candidate tasks T between t0 and t1.

From the objective function, it is easy to identify how the components of a task contribute to its score.
The first sum, over pre-existing tracks, is made small by choosing tasks that improve the sensor managers ID
information on existing tracks. The second sum, over gridblocks not in the observation footprint, is positive and
grows with time. This quantity is made small by choosing tasks with a large footprint and/or long duration.
The final sum, over gridblocks within the observation footprint, is made small by choosing tasks that cover
gridblocks with many undetected targets and/or gridblocks with a high probability of detecting undiscovered
targets. This score formula also displays the balance between searching with small footprint sensors that provide
better classification information (e.g. EO/IR camera) and searching with large footprint sensors that cover more
gridblocks (e.g. GMTI radar).

4. EVALUATION OF A SENSOR SCHEDULE

A sensor schedule is a list of sensor tasks for each sensor, spanning a common time interval. In this section, [t0, t1]
will be a scheduling interval. t1 is referred to as the “horizon time” of the schedule. Equation (2) was derived
to score a single sensor task under the implicit assumption that there were no other tasks occurring between t0
and t1. In deriving a formula to score a sensor schedule over [t0, t1], it is no longer possible to assume that tasks
are completely isolated and occurring independent from one another. Equation (2) must be generalized.

Suppose schedule Ψ consists of tasks {T1, . . . , TM} to be executed by one or more sensors. If Ψ represents
a multi-sensor schedule, then some of the T1, . . . , TM sensor tasks may be occurring simultaneously. Simulating
and scoring simultaneous tasks presents a difficult hurdle for many information-based tracking methods. A
significant advantage of the method presented in this paper is that the objective function gracefully extends to
scoring multi-sensor, multi-task sensor schedules, even those including simultaneous or partially time-overlapping
tasks.

A multi-task objective function should be useful in different types of sensor scheduling algorithms. Scheduling
algorithms often fall into two categories: “exhaustive” and “greedy” (i.e. branch-and-bound). The exhaustive
scheduling algorithm considers all possible sensor schedules (combinations of tasks) over a particular scheduling
time interval [t0, t1]. Greedy algorithms limit the set of candidate schedules considered by making a final task
decision at each decision point.

Figure 1(a) is a tree diagram displaying all the candidate sensor schedules that an exhaustive scheduling
algorithm might examine. At the first decision point, the sensor manager must choose between competing
candidate tasks T11, T12 and T13. At the second decision point, the sensor manager must choose between



competing candidate tasks T21, . . . T27 (depending on which of T11, . . . T13 is being considered). The complete
candidate schedules are 2-task sequences of the form {T1i, T2j}, i = 1, 2, 3, j = 1, . . . , 7, and are shown as
leaf nodes in the tree (far right). The exhaustive scheduling algorithm generates each complete schedule, then
evaluates the schedule with an objective function.

No schedule
(t=0)

schedule
= task T1,3

schedule
= task T1,2

schedule
= task T1,1

schedule
= task T1,3 + task T2,7 

schedule
= task T1,3 + task T2.6 

schedule
= task T1,2 + task T2,5

schedule
= task T1,2 + task T2,4

schedule
= task T1,1 + task T2,3

schedule
= task T1,1 + task T2,1

schedule
= task T1,1 + task T2,2

(a) Exhaustive scheduling algorithm

No schedule
(t=0)

schedule
= task T1,3

schedule
= task T1,2

schedule
= task T1,1

schedule
= task T1,2 + task T2,5

schedule
= task T1,2 + task T2,4

(b) Incremental scheduling algorithm

Figure 1. Search trees for exhaustive and incremental scheduling algorithms

In Figure 1(b), the same scenario is searched with a greedy algorithm. Tasks T11, T12, and T13 are individually
evaluated with an objective function, and T12 is selected for the sensor schedule (as shown in bold). Then tasks
T24 and T25 are individually evaluated, and T24 is selected. Schedules including tasks T21, T22, T23, T26, and T27

are never considered, since task T12 was selected at the first decision point.

The extension of (2) to an objective function for multi-task sensor schedules depends on the type of scheduling
algorithm employed. We first consider the exhaustive case. The multi-task track-based objective function must
reflect the potential improvement to every track estimate by every task, although only certain tasks will cover
(and therefore improve the state estimate of) certain tracks. The track-based portion of the multi-task objective
function is

JT =
∑

pl∈{existing tracks}

W (pl) · Ĥ(pl, t1, T1, . . . , TM ).

To describe a WAS-based objective function for the exhaustively generated multi-task schedule, some extra
notation will be required. Let

dkT
j (T ) =

{
(1−Dj(T )) for kT = 0
Dj(T ) for kT = 1

, Ĥj(t, kT ) =

{
Ĥj(t) for kT = 0
Ĥj(t, T ) for kT = 1

. (3)

The second and third terms of (2) represent entropy of target mass that remains in the search space undiscov-
ered by T , and entropy of targets expected to be discovered by T . With multiple tasks in a schedule, undiscovered
target mass in the search space may be discovered by up to M tasks. Target mass that remains undiscovered at
t1 (following the evaluation of all tasks in the schedule) must avoid detection by all tasks in the schedule. The
multi-task WAS-based objective function uses the notation of (3) to represent all these possibilities. The sum over
expected entropy of new detections or non-detections has 2m sums, one for each combination of discovered/not
discovered by task Tm, m ∈ {1, . . . ,M}:

∑
j

Wj · λU
j (t0) ·

1∑
kT1 ,...kTM

=0

{
d

kT1
j (T1) · · · d

kTM
j (TM ) · Ĥj(t1, kT1 , . . . , kTM

)
} .



The complete objective function for the exhaustively generated multi-task sensor schedule {T1, . . . , TM} is
therefore given by

J =
∑

pl∈{existing tracks}

W (pl) · Ĥ(pl, t1, T1, . . . , TM ) (4)

+
∑

j

Wj · λU
j (t0) ·

1∑
kT1 ,...kTM

=0

{
d

kT1
j (T1) · · · d

kTM
j (TM ) · Ĥj(t1, kT1 , . . . , kTM

)
}

+
∑

j

{Wj · εj(τj) ·Hmax} . (5)

The multi-task objective function associated with greedy scheduling algorithms should be designed to score
individual tasks that are potentially occuring simultaneously with other tasks. A schedule consisting of tasks
{T1, . . . , TM} will be generated incrementally, and each task in the schedule must be compared to a set of
competing candidate tasks at each particular decision point. Suppose that tasks {T1, . . . , TK−1} have been
selected by the greedy scheduling algorithm. We seek an objective function with which to score candidate tasks
TK that would follow TK−1 in the schedule.

The track-based objective function is the same as (2) except that it must account for the effects of tasks
{T1, . . . , TK−1} on the tracks,

JT =
∑

pl∈{existing tracks}

W (pl) · Ĥ(pl, t1, T1, . . . , TK−1, TK).

The WAS-based objective function accounts for tasks {T1, . . . , TK−1} by removing the expected discoveries
by those tasks from the target mass distribution. Candidate task TK has zero probability of detecting targets
that were expected to be detected by tasks {T1, . . . , TK−1}. The expected discoveries of TK are based on the
target mass that remains in the search space undiscovered by {T1, . . . , TK−1},

λU
j (0) · (1−Dj(T1)) · · · (1−Dj(TK−1)) .

The weighted entropy of targets expected to be discovered by TK is therefore∑
j

{
Wj · λU

j (0) · (1−Dj(T1)) · · · (1−Dj(TK−1)) ·Dj(TK) · Ĥj(t1, TK)
}

.

The expected weighted entropy of targets remaining in the search space undiscovered by TK is given by∑
j

{
Wj · λU

j (0) · (1−Dj(T1)) · · · (1−Dj(TK)) ·Hmax

}
.

Therefore, to compare competing candidate tasks at decision point TK , it is necessary to compute (for each
candidate task TK)

J(t1, T1, . . . , TK) ≈
∑

pl∈{existing tracks}

{
W (pl) · Ĥ(pl, t1, T1, . . . , TK)

}

=
∑

j

{
Wj · λU

j (0) · ·

(
K−1∏
k=1

(1−Dj(Tk))

)
·Dj(TK) · Ĥj(t1, TK)

}

+
∑

j

{
Wj · λU

j (0) ·

(
K∏

k=1

(1−Dj(Tk))

)
·Hmax

}
+
∑

j

{
Wj · εj(τj) ·Hmax

}
.



The objective function for the entire schedule {T1, . . . , TM} includes (a) the weighted entropy of every track
following the evaluation of {T1, . . . , TM}, (b) (m + 1) sums over expected entropy of new detections, one for the
expected detections of each task, and one for the targets not expected to be discovered by any task, and (c) and
undiscovered target mass growth term. The incremental score of schedule Ψ is therefore

J(t1, T1, . . . , TM ) ≈
∑

pl∈{existing tracks}

{
W (pl) · Ĥ(pl, t1, T1, . . . , TM )

}

=
∑

j

{
Wj · λU

j (0) ·

[
M∑

m=1

(
m−1∏
K=1

(1−Dj(TK))

)
·Dj(Tm) · Ĥj(t1, Tm)

]}
+
∑

j

{
Wj · λU

j (0) · (1−Dj(T1)) · · · (1−Dj(TM )) ·Hmax

}
+
∑

j

{
Wj · εj(τj) ·Hmax

}
.

5. SIMULATION RESULTS

Figure 2. SLAMEMTM screen capture of scenario region and airborne
radar platforms

To demonstrate the feasibility of the sen-
sor management algorithm, the logic was
integrated into Toyon’s SLAMEMTM sim-
ulation and used to control the sensors
in an example military surveillance mis-
sion. The mission is to maintain continuous
track of several targets of interest (TOIs)
as they move about an area of interest
(AOI). The AOI is shown in Figures 3(a)
and 3(b). The images are screen captures of
a SLAMEMTM display showing the terrain
and road network (note the scale in the bot-
tom right of the display). The AOI chosen
for this simulation features complex terrain,
with a mix of hills and level plains. Tracking
of vehicles in hills and mountainous regions
is difficult because the sensors may not have
clear line of sight (LOS) to the targets.

A measure of effectiveness (MOE) of the
tracking and surveillance algorithms is the
number of TOIs that the automatic tracker
has in track that are correctly classified (de-
fined as the probability of being a tracked
vehicle greater than 0.6). Although this is

a tracking metric, the performance of the tracker relies heavily on the sensor measurements that are obtained.
Because our sensor resource management algorithm is designed to provide the necessary sensor coverage to sup-
port long-term track identification and maintenance of targets, this tracking metric is a natural MOE to focus
on. In the plots that follow, the curves are the averaged results of ten Monte Carlo trials in SLAMEMTM.

All test cases include two airborne assets flying in orbits (one of which is shown as a purple line in Figure 2)
approximately 150km away from the center of the AOI, and phased so that the sensor of one asset is always
available whenever the other asset is in a turn (the sensors are set up to be untaskable when the asset is turning).
Each asset contains a multi-mode radar; some radar modes are capable of providing classification information
which is used as evidence in a Bayesian ID scheme, whereas other modes only provide kinematic data for use in
updating the track.

The algorithm considers candidate radar tasks 10 degrees in azimuth. A new sensor schedule is developed
every 15 seconds. Undiscovered target densities for the calculation of JW were set between 0.01 and 0.7 per



square kilometer, depending on target type. The detectability Di(T ) was fixed at (0.9 ∗ 0.85) = 0.765, assuming
a PD of 0.9 and a probability of undiscovered target in motion of 0.85.

(a) Search space divided into 4 quadrants (4 AOIs) (b) Search space showing TOI migrations

Figure 3. SLAMEMTM screen shots for cases I and II

5.1. Test Scenario I: TOIs Divided into Quadrants

In the following three test scenarios, six ground vehicles existed in isolated sub-regions of the search space. One
tank and one SAM battery resided in the northwest corner (Quadrant II in Figure 3(a)), and identical pairs
of vehicles resided in the southwest and southeast corners of the space (Quadrants III and IV in Figure 3(a)).
There were no vehicles in the northeast corner of the search space (Quadrant I). Over the 3-hour simulation,
each pair of vehicles executed move-stop and stop-move sequences that were (partially) temporally staggered
from one sub-region to the next. The airborne assets in these tests carried only radar sensors, which detect and
track moving targets. Thus, tracks were usually lost while the vehicles were stopped. The pairs of vehicles did
not necessarily move together, so ambiguities in vehicle classification could arise if the vehicle paths intersected.
All six of these ground vehicles were classified as TOIs, and therefore given higher tracking priority by weighting
their entropy higher in the objective function.

5.1.1. Scenario I-a: No WAS

The first test case used no intelligent wide area surveillance technique. The objective function was purely track-
based (JT only), and if at any point in time a particular sensor had no track to look at, the asset manager (AM)
chose the first candidate task in the list of possible tasks to be executed by the sensor. While vehicles were in
track and moving, the track-based tasking did a reasonable job of maintaining track on them. However, when
the vehicles transitioned from stopped to moving, the track-based tasks did not detect them very quickly, as
most tasks were focused on the moving vehicles. As expected, fewer tracks were maintained in this test case.
Tracking results appear in blue in Figure 4(a). Over the 3-hour simulation, an average of 2.68 TOIs were kept
in track and correctly classified (displayed as the single blue diamond on the far right of the graph).

5.1.2. Scenario I-b: WAS

The second test case used the entropy-based WAS technique described in the paper (JT +JW objective function),
implemented on a discretization of the search space. The search space (approx. 200km x 200kn square) was



divided into 64 equal gridblocks. A target mass vector was assumed for each gridblock: our a priori assumption
v = [0.0525, 0.0525, 0.0] represented a target mass distribution of 0.0525 tanks, 0.0525 SAMs, and 0.0 civilians in
each gridblock. Note that this assumed target mass corresponds to a perception that 3.36 tanks and 3.36 SAMs
existed in the entire search space: (0.0525 vehicles per gridblock) * (64 gridblocks) = 3.36 vehicles. If this a
priori target mass assumption were less accurate, performance of the tasking algorithms may suffer slightly. We
observed more intelligently placed sensor footprints in this test case than in Case I-a, and a subsequently higher
number of targets discovered and maintained in track. Tracking results appear in pink in Figure 4(a). Over the
3-hour simulation, an average of 3.30 TOIs were kept in track and correctly classified (displayed as the single
pink square on the far right of the graph).

5.1.3. Scenario I-c: WAS with a priori Knowledge

The final test case is a more sophisticated version of the second. In this case, the tasking algorithm was provided
with a more precise estimate of the target mass distribution. Indeed, no target mass was assumed for the
northeast quadrant of the search space (reflecting a priori knowledge that no actual targets exist there). The
remaining regions had uniformly distributed target mass vectors v = [0.07, 0.07, 0.0] representing an assumption
that 3.36 Tanks and SAMs existed in the search space. Tracking results for this case were slightly better than
in Case II, since the sensor could do a more refined search for the targets. Tracking results appear in yellow
in Figure 2. Over the 3-hour simulation, an average of 3.90 TOIs were kept in track and correctly classified
(displayed as the single yellow triangle on the far right of the graph).

Coverage maps for Cases Ia-Ic appear as Figures 5(a)–5(c). The color scale for these maps is displayed as
Figure 5(d). Figure 5(a) shows sensor coverage during Case I-a, when no intelligent WAS method was employed.
Coverage of the search space is clearly non-uniform, but in no systematic way. Figure 5(b) shows sensor coverage
during Case I-b. Uniform coverage of the search space was achieved by presetting the AM with a uniform target
mass map. Figure 5(c) shows sensor coverage during Case I-c, when the AM was loaded with a more precise
target mass map reflecting the absence of targets in Quadrant I. Figure 5(c) displays significantly lower sensor
coverage of Quadrant I because of the a priori knowledge that no target existed there. In all three figures,
coverage of Quadrant III is less consistent; this is an artifact of the positions of the airborne radar assets. The
fixed flight paths of the planes often prevented them from viewing Quadrant III.

5.2. Test Scenario II: Staggered TOI Migration

In the following two test scenarios, three tanks move from the northwest corner of the search space (Quadrant
II in Figure 6) to the southeast corner of the space (Quadrant IV). These movements are temporally staggered:
the first tank begins moving immediately, the second tank begins moving 3 hours later, and the final tank begins
moving 6 hours later. Since the airborne assets in these tests carried only MTI sensors, vehicles were not detected
until they began to move. The vehicles continued to move around within Quadrant IV after they arrived there,
rendering them trackable if the sensors had clear line-of-sight to them. The simulation runs for 8 hours.

5.2.1. Scenario II-a: No WAS

As in Case I-a, this test case used no intelligent wide area surveillance (WAS) technique. The objective function
was purely track-based (JT only). While tanks were in track and moving, the track-based tasking did a reasonable
job of maintaining track on them. However, when the tanks first began moving, especially the second and third
tanks, the track-based tasks did not detect them very quickly. Indeed, the first tank moved out of Quadrant
II before the second tank began moving; therefore, the AM was focusing nearly all the sensor resources on
the discovered (moving) tank in Quadrant IV. It is by chance that sensor tasks cover Quadrant II again and
eventually detect the second and third tanks. Tracking results appear in blue in Figure 4(b). Over the 8-hour
simulation, an average of 0.88 TOIs were kept in track and correctly classified (displayed as the single blue
diamond on the far right of the graph).



5.2.2. Scenario II-b: WAS with a priori Knowledge

This test case implemented the entropy-based WAS technique (JT + JI objective function) on a discretized area
of interest (AOI). The WAS region was chosen to be Quadrant II only, reflecting a priori knowledge by the AM
that all the tanks existed in that region. The WAS region was divided into 16 equal grid-blocks and the target
mass vector v = [0.0, 0.2, 0.0] was assumed for each grid-block, reflecting an assumption that 3.2 tanks (and no
other vehicles) existed in the AOI (16 * 0.2 = 3.2). Instead of following the first tank out of Quadrant II and
rarely looking back, as in Case IV, the AM continues to task sensors to cover Quadrant II (the AOI) even while
other vehicles are in track elsewhere. This persistent coverage of Quadrant II allows the AM to discover the
other tanks much sooner after they begin moving. Tracking results appear in pink in Figure 4(b). Over the
3-hour simulation, an average of 1.46 TOIs were kept in track and correctly classified (displayed as the single
pink square on the far right of the graph).

Coverage maps for Cases II-a and II-b appear below as Figures 6(a) and 6(b). Figure 6(a) shows sensor
coverage during Case II-a, when no intelligent WAS method was employed. Coverage is heavier in Quadrant IV
because the sensors followed the first tank to that region and continued to view that region almost exclusively.
The tanks remaining in Quadrant II were stationary for most of the simulation, remained undiscovered to the
AM, and gave the AM no reason to task sensors there. The tank(s) in Quadrant IV kept moving until the end of
the simulation and therefore remained trackable. Figure 6(b) shows sensor coverage during Case II-b. Coverage
is heavier in Quadrant II, which is good, considering that the majority of the tanks spent the majority of their
time there. The WAS region, laden with target mass, motivated persistent coverage of Quadrant II, even though
the tanks that existed there were often sitting still and therefore undetectable.
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Figure 4. TOIs correctly classified over time

6. SUMMARY
The dynamic tasking algorithm described in this paper evaluates tasks on their ability to improve knowledge of
existing tracks as well to acquire new tracks. As can be seen from these test scenarios, neglecting WAS leads to
significantly poorer tracking performance. We observed that schedules designed to minimize entropy of existing
tracks tend to focus sensor resources on small geographical areas. This is undesirable for tracking problems
involving extended operating conditions such as multiple stop-move-stop cycles and long mission durations. If,
during the course of a mission, track of a TOI is lost, the focusing of resources only on existing tracks will
significantly reduce the probability of reacquiring the TOI at a later time. By requiring the objective function to
also have a track initiation component JW , we are forcing the algorithm to strike a balance between track-focused
sensor coverage and WAS coverage designed to acquire (and reacquire) tracks.
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(a) Case I-a (b) Case I-b (c) case I-c (d) Scale

Figure 5. Case I: GMTI coverage over 3-hour scenario

(a) Case II-a (b) Case II-b (c) Scale

Figure 6. Case II: GMTI coverage over 3-hour scenario
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